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Quantum phase transitions in the one-dimensional period-two and uniform quantum compass model are
studied by using the pseudospin transformation method and the trace map method. The exact solutions are
presented, the fidelity, the nearest-neighbor pseudospin entanglement, spin and pseudospin-correlation func-
tions are then calculated. At the critical point, the fidelity and its susceptibility change substantially, the gap of
pseudospin concurrence is observed, which scales as 1 /N �N is the system size�. The spin-correlation functions
show smooth behavior around the critical point. In the period-two chain, the pseudospin-correlation functions
exhibit an oscillating behavior, which is absent in the uniform chain. The divergent correlation length at the
critical point is demonstrated in the general trend for both cases.
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I. INTRODUCTION

Recently, the quantum compass model was introduced to
describe some Mott insulators with orbit degeneracy by a
pseudospin,1,2 where the coupling along one of bonds is an
Ising type, but different spin components are active along
other bond directions. The disorder effect in this model was
also examined.3 The protected qubit is formed if it is sepa-
rated from the low-energy excitations by a pseudospin ex-
cited gap. So a high quality factor, scalable and error-free
scheme of quantum computation can be designed.4 The sym-
metry of pseudospin Hamiltonians is usually much lower
than SU�2�,5 and the result of numerical calculation has been
shown that its eigenstates are at least twofold degenerate or
highly degenerate and disordered.6 The quantum XX-ZZ
model, also called one-dimensional �1D� compass model, is
constructed by antiferromagnetic order of X and Z pseu-
dospin components on odd and even bonds, respectively.7 In
addition, the 1D quantum compass model is exactly the same
as the 1D reduced Kitaev model.8 The analytic eigenspectra
in the latter model have been obtained, and it was shown that
this model has one gapless phase. But the characters of the
quantum phase transition have never been well studied pre-
viously. The realistic models of the orbital degeneracy are
more complicated.

For the compass model, the pseudospins may lead to en-
hanced quantum fluctuations near the quantum phase transi-
tions �QPTs� and to entangled spin-orbital ground states. The
numerical results have indicated that a first-order QPT occurs
at Jx=Jz between two different states with spin ordering
along either x or z directions.6 Recently, the ground-state
�GS� fidelity9–15 and entanglement16–24 emerged from quan-
tum information science have been used in signaling the
QPTs. To calculate these quantities accurately, it is necessary
to know the exact GS wave function. The derivatives of the
GS energy are intrinsically related to the GS fidelity,13 both
can be used to identify the QPTs. For the special case of two
spin-1/2 system, the entanglement is given by the concur-
rence. Quantum entanglement is one of the most striking
consequences of quantum correlation in many-body systems,

shows a deep relation with the QPT.16 Therefore understand-
ing the entanglement is very important in QPTs.17,18 In the
context of QPTs, the quantum entanglement have been the
subject of considerable interests in the Dicke model19–21 and
the XY model.22,23

On the other hand, experimental works on quasicrystals25

and quasiperiodic superlattices26 have inspired theoretical in-
terests in 1D quasiperiodic systems. Period-two chain can be
regarded as the intermediate one between uniform periodic
chain and quasiperiodic chain, which have exhibited some
unusual physical properties. In this work, we study the one-
dimensional compass model for both uniform and period-two
cases by using transfer-matrix method24 and the method of
Lieb et al.27 The exact solutions for two cases are obtained.
The GS fidelity and the energy gap between uniform and
period-two quantum spin chain are calculated. The behaviors
of the pseudospin correlations with periodic boundary con-
dition are given.

The paper is organized as follows: In Sec. II, we give the
model and the exact solution with periodic boundary condi-
tion. The calculation methods of fidelity and concurrence are
introduced in Sec. III. The correlation functions are analyzed
in Sec. IV. The paper is summarized in Sec. V, where we
give some discussions and conclusions.

II. MODEL HAMILTONIAN AND EXACT SOLUTION

The Hamiltonian of one-dimensional compass model is
given by

H = �
i=1

N�

�Ji��2i−1
z �2i

z + ��2i
x �2i+1

x �� , �1�

where Ji is the nearest-neighbor interaction, �i
x�z� are the

Pauli matrix on site i, N=2N� is the number of the sites, and
� is the coupling parameter which determines the phase tran-
sition point. For J2i=J and J2i+1=�J, the model is a period-
two case. By using the pseudospin �orbital� transformation
method which is given by Brzezicki et al.,7 we can define the
modulated interactions for odd pairs of pseudospins �2i
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−1,2i� as −�i
z��2i−1

z �2i
z , and the spin-flip operators of x di-

rection are given by �i
x��−1��k=1

i−1 sk	 j=2i
2N�� j

x. The two neigh-
boring odd bonds can be expressed as the even �2i ,2i+1�
bonds by a product −�i

x�i+1
x . Then the Hamiltonian of one-

dimensional compass model can be written as follows:

Hs� = − �
i=1

N�−1

�Ji��i
z + ��i

x�i+1
x �� − JN���N�

z + �− 1�s��N�
x �1

x� .

�2�

Note that it looks like but is different from the transverse
field Ising model.

The vector s� represents the state �s1 , ¯ ,sN��. Here si
=1�si=0� labels that the two pseudospins of the odd bond

�2i−1,2i� are parallel �antiparallel�. s=�i=1
N� si is the number

of parallel odd pairs of spins. In this paper, we only discuss
the ferromagnetic boundary condition of the quantum com-
pass model, i.e., the case of the even s. The effective Hamil-
tonian �2� can be solved by using the Jordan-Wigner trans-
formation for spin operators,

�i
z = 1 − 2ci

†ci, �3�

�i
x = �ci + ci

†�	
j�i

�1 − 2cj
†cj� , �4�

where ci and ci
† are the anticommuting fermion operators.

After this transformation, the effective Hamiltonian becomes

Hs� = �
i=1

N�−1

�2Jici
†ci + Ji��cici+1

† − ci
†ci+1

† + cici+1 − ci
†ci+1��

+ JN���cN�c̃1
† − cN�

† c̃1
† + cN�c̃1 − cN�

† c̃1� + JN�cN�
† cN�

− �
i=1

N�

Ji, �5�

with

c̃1 = c1�− 1�1+s+�j=1
N� cj

†cj . �6�

Because we assume that the parity of s is even, it implies
that only states with even numbers of Bogoliubov quasipar-
ticles in the spectrum of the Hamiltonian �5�. Under the pe-
riodic boundary condition �cN�+1=c1�, the number of c fer-
mions must be odd parity, as can easily be obtained from Eq.
�6�. Then the general form of the Hamiltonian is simplified to

Hs� = �
i=1

N�

�2Jici
†ci + Ji��cici+1

† − ci
†ci+1

† + cici+1 − ci
†ci+1��

− �
i=1

N�

Ji. �7�

For the period-two case, we can rewrite Eq. �7� as the fol-
lowing form by neglecting the last constant term,

H = �
i,j=1

N� 
ci
†Aijcj +

1

2
�ci

†Bijcj
† + H.c.�� , �8�

where the nonzero elements of the matrices A and B are
given by

Aij = 2Ji�i,j − Ji�� j,i+1 − Jj�� j,i−1,

Bij = − Ji�� j,i+1 + Jj�� j,i−1;

A1N� = AN�1 = − JN�� ,

B1N� = − BN�1 = JN�� .

Equation �8� can be diagonalized by using the Bogoliubov
transformation,

�k =
1

2�
i=1

N�

��	ki + 
ki�ci + �	ki − 
ki�ci
†� ,

�k
† =

1

2�
i=1

N�

��	ki + 
ki�ci
† + �	ki − 
ki�ci� , �9�

where 
ki is the eigenvector of the matrix �A+B��A−B� and
	ki is that of the matrix �A−B��A+B�. The eigenvalues of
both matrices are corresponding to �k

2. We take k
=0, �

2

N�
, �2 2

N�
, . . . ,. This relation is satisfied with the pe-

riodic boundary condition. In general, the two eigenvectors
�	ki and 
ki� satisfy the following equations:

�A − B�
� k = �k	� k,�A + B�	� k = �k

�

k, �10�

where 	� k and 
� k are two column vectors. The diagonalized
result takes the form

H = �
k

�k��k
†�k −

1

2
 . �11�

The excitation energies �k�0. At zero temperature, the QPT
points are those parameters that satisfy the condition �k=0,
and the two coupled coefficients of the Bogoliubov transfor-
mation satisfy the following equations:

�k	k,i = 2Ji
k,i − 2Ji−1�
k,i−1,

�k
k,i = 2Ji�	k,i − 2Ji�	k,i+1, �12�

which can be derived from Eq. �10�. For the period-two case,
i.e., J2i=J and J2i+1=J�, if we take J=1 and assume that

k,2n=Aei2nk and 
k,2n+1=Bei�2n+1�k, the exact results of �k
can be obtained analytically from the coupled Eq. �12� by
using the trace map method. The result is expressed as

�k�
2 = � �4J4��2 + 1�2��2 − 1�2 + 64�2J4�2 cos2 k

+ ��2 + 1��2J2�2 + 2J2� . �13�

The excitation energies have two branches ��k− and �k+�.
For a special case �=1, i.e., the uniform periodic chain, the
excitation energies can be simplified as 2J�1+�2−2� cos k,
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which is the same as that in Ref. 7. The QPT point is deter-
mined by �k−. At the critical point, the equation can be de-
coupled for �k=0. One of Eq. �12� is rewritten as 	k,i+1

= 1
�	k,i. Due to the periodic boundary condition, � 1

� �N�=1
should be satisfied. The only possibility is �=1, i.e., there is
only one QPT point at �=1 in this case. On the other hand,
the GS energy is expressed as E0=− 1

2�k�k which includes
the spectra of the � branches. In thermodynamic limit, the
summation can be replaced by an integral,

E0 = − JN�
1

2
�

0



��k− + �k+�dk . �14�

The pseudospin excitation gap �, which is energy difference
between the first-excited state and the ground state, is equal
to �0−, which disappears at �=1.

From the Fig. 1, we can find that the symmetries of the
pseudospin gaps are broken more obviously as � is away
from the QPT point in the period-two model. The symme-
tries remain for the uniform model. The quantum critical
point is fixed at �c=1 which separates the disorder phase. In
the vicinity of the quantum critical point, the linear relation

�=�10��2+1�−2�25�4+14�2+25�1−�� is generally satis-
fied.

III. FIDELITY AND PSEUDOSPIN CONCURRENCE

The exact GS wave function of the system must be ob-
tained in order to calculate the fidelity and concurrence.
Similar to the Bardeen, Cooper, and Schrieffer GS wave
function, we can write the present GS wave function as28

��0���� = 	
k

�k�Vac� for all k . �15�

According to Eq. �9� and the definition of the fidelity11

F��,�� = ���0�����0�� + ���� , �16�

where � is a small quantity ��=10−4 is taken in our calcula-
tion�, the fidelity and its susceptibility can be given by

F��,�� = 	
k
��

i

1

4
�	ki��� − 
ki����

��	ki�� + �� − 
ki�� + ���� , �17�

S��� = 2 lim
�→0

1 − F��,��
�2 . �18�

The numerical results for the GS fidelity and its suscepti-
bility are plotted in Fig. 2. An abrupt jump occurs in the
vicinity of the QPT point ��c=1� as a consequence of the
dramatic change of the structure of the GS. It agrees exactly
with our analytical derivations. One can see level crossing at
�=�c, indicating the first-order QPT in this model.

In recent years, the concept of concurrence is usually
adopted as the measure of the entanglement in spin-1/2 sys-
tems. We will give the nearest-neighbor pseudospin two-
point correlation functions to calculate the nearest-neighbor
concurrence �NNC� of the system. Because of the reflection
symmetry, the global phase flip symmetry, and the Hamil-
tonian being real, the nonzero elements are given by18,27

��i
x�i+1

x � = Gi,i+1,��i
y�i+1

y � = Gi+1,i,

��i
z�i+1

z � = Gi,iGi+1,i+1 − Gi,i+1Gi+1,i,

��i
z� = − Gi,i, �19�

where Gi,j =−�k
ki	kj. The definition of concurrence is
given by C�i , j�=max�r1�i , j�−r2�i , j�−r3�i , j�−r4�i , j� ,0�,
where r��i , j� are the square roots of the eigenvalues of the

product matrix R=�ij�ij
˜ in descending order. The spin flipped

matrix �ij
˜ is defined as �ij

˜= ��y � �y��ij
� ��y � �y�. The �ij is

the density matrix for a pair of qubits from a multiqubit state.
In this way, we can calculate the NNC of pseudospins. For
the period-two chain, the concurrence C2i,2i+1 and C2i+1,2i+2
are different. So we use the average concurrence C
= 1

2 �C2i,2i+1+C2i+1,2i+2�.
The numerical results for the concurrence as a function of

� are given in Fig. 3. It is shown that the maximum value of

FIG. 1. Pseudospin excitation gap � on uniform and period-two
cases of the compass model. The gaps collapse at the quantum
phase-transition point at �=1 for different values of �. FIG. 2. The fidelity and the susceptibility of the period-two

compass model versus � for �=0.2,0.5,0.8,1.0 and N�=100. The
first QPT point is obviously found at �c=1.
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the concurrence gradually increases with the increase of pa-
rameter �. If � is small enough, the entanglement of nearest-
neighbor pseudospins disappears in the larger � regime. A
cusp of the first derivative of the concurrence occurs at the
critical point �=1, similar to those in Ref. 16.

A gap is found in the curve of NNC versus � at the QPT
point �c in our calculation of the pseudospin concurrence. If
the pseudospin chain goes to infinite, the gap has the critical
behavior with �C�N−1, as shown in the inset of Fig. 4.
Obviously, it is the finite-size effect. The question then
arises: what is the origin of the concurrence gap? The answer
is the symmetry of system which has been assumed by the
ferromagnetic even-pseudospin chains with periodic bound-
ary condition in this paper. The QPT in the 1D compass
model is of first order,4,7 the scaling behaviors at the critical
point should be absent. But the discontinuousness of the con-
currence at the QTP may exhibit the finite-size scaling be-
havior N→−1,29 consistent with the present observation.
Due to the concurrence gap, the value of ��C becomes mini-
mum at the critical point. However, the maximum value of
the concurrence occurs below �c is not related to the critical
point. The present results for the concurrence are similar to
those in the periodic quantum Ising chain model.18

IV. SPIN AND PSEUDOSPIN-CORRELATION FUNCTIONS

First, we show the numerical results of the ground-state
spin correlations on odd �2i−1,2i� and even �2i ,2i+1�
bonds as a function of � with a periodic boundary condition.
The value of ��2i−1

z �2i
z � gradually increases with � while

��2i
x �2i+1

x � decreases with �, as shown in Fig. 5. The crossing
points of ��2i−1

z �2i
z � and ��2i

x �2i+1
x � curves for the same �

occur at the quantum critical point. Actually, the compass
model is a kind of pseudospin Ising chains at �=0 and �
→�. As a result, the curves of spin correlations versus � are
asymmetric. So ��2i−1

z �2i
z �→0 and ��2i

x �2i+1
x �→−1 as �→�.

It is found that the correlation gradually increases with the
decreasing �. When �=1, the numerical result at the critical
point is the same as the analytical result by Brzezicki et al.7

Finally, we calculate the distance dependence of the pseu-
dospin correlator ��i

x�i+r
x � under the periodic boundary condi-

tion for the period-two and uniform cases. The two-point
correlation function is given by27

FIG. 3. The concurrence C versus � for �=0.2,0.5,0.8,1.0
�N�=100�. The inset shows the derivative ��C as a function of �.

FIG. 4. The NNC as a function of � with �=0.6 for N�=100. A
gap �C for the concurrence is found at the critical point. The inset
shows the size scaling of the gap.

FIG. 5. Spin-correlation functions in the period-two chain and
uniform chain for �=0.2,0.6,1.0 and N�=100.

FIG. 6. Distance dependence of ��i
x�i+r

x � correlator at the critical
point. The parameters are �=0.6,1.0 and N�=200.
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��i
x�i+r

x � = �
Gi,i+1 Gi,i+2 . . . Gi,i+r

Gi+1,i+1 Gi+1,i+2 . . . Gi+1,i+r

. . . . . . . . . . . .

Gi+r−1,i+1 Gi+r−1,i+2 . . . Gi+r−1,i+r

� , �20�

which has the form of Toeplitz determinant. When r→�, the
correlators gradually decrease and approach the asymptotic
value for large r in an algebraic way.7 This correlator is
positive for all r, indicating that there is the long-range fer-
romagnetic order. It is interesting to find that the oscillation
occurs for ��1, i.e., for period-two chain, which can be
attributed to the different coupling coefficients of odd and
even bonds. However, the similar trend appears in both
cases, as shown in Fig. 6.

V. SUMMARY AND DISCUSSION

By using the pseudospin transformation method and the
trace map method, we obtain the exact solution of one-
dimensional compass model with periodic boundary condi-
tion. The parameter � determines the symmetries of finite
pseudospin excitation gap �, but the phase transition point is
still fixed at �=1. The quantum critical point separates the

disorder phase. The pseudospin liquid disordered ground
state is the universal features in the 1D compass model. The
numerical methods to calculate the fidelity and concurrence
are also given. We observe a first-order quantum phase tran-
sition between two different disordered phases. The concur-
rence gap �C displays the scaling property N=−1. The spin
and pseudospin-correlation functions are calculated. Curves
for the two spin-correlation function cross exactly at the
critical point for any value of �. It is observed that the dis-
tance dependence of ��i

x�i+r
x � correlator displays oscillation in

the period-two case, and a divergent correlation length at the
critical point is observed in both uniform and period-two
chains.
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